No-arbitrage conditions, scenario trees, and multi-asset financial optimization
Alois Geyer,
Michael Hanke and
Alex Weissensteiner
European Journal of Operational Research, 2010, vol. 206, issue 3, 609-613
Abstract:
Many numerical optimization methods use scenario trees as a discrete approximation for the true (multi-dimensional) probability distributions of the problem's random variables. Realistic specifications in financial optimization models can lead to tree sizes that quickly become computationally intractable. In this paper we focus on the two main approaches proposed in the literature to deal with this problem: scenario reduction and state aggregation. We first state necessary conditions for the node structure of a tree to rule out arbitrage. However, currently available scenario reduction algorithms do not take these conditions explicitly into account. State aggregation excludes arbitrage opportunities by relying on the risk-neutral measure. This is, however, only appropriate for pricing purposes but not for optimization. Both limitations are illustrated by numerical examples. We conclude that neither of these methods is suitable to solve financial optimization models in asset-liability or portfolio management.
Keywords: Financial; optimization; Uncertainty; modeling; Scenario; trees; Sparse; trees (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00221-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:206:y:2010:i:3:p:609-613
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().