The Generalized-Trend-Diffusion modeling algorithm for small data sets in the early stages of manufacturing systems
Yao-San Lin and
Der-Chiang Li
European Journal of Operational Research, 2010, vol. 207, issue 1, 121-130
Abstract:
The statistical theories are not expected to generate significant conclusions, when applied to very small data sets. Knowledge derived from limited data gathered in the early stages is considered too fragile for long term production decisions. Unfortunately, this work is necessary in the competitive industry and business environments. Our previous researches have been aimed at learning from small data sets for scheduling flexible manufacturing systems, and this article will focus development of an incremental learning procedure for small sequential data sets. The main consideration concentrates on two properties of data: that the data size is very small and the data are time-dependent. For this reason, we propose an extended algorithm named the Generalized-Trend-Diffusion (GTD) method, based on fuzzy theories, developing a unique backward tracking process for exploring predictive information through the strategy of shadow data generation. The extra information extracted from the shadow data has proven useful in accelerating the learning task and dynamically correcting the derived knowledge in a concurrent fashion.
Keywords: Back-propagation; neural; networks; Sequential; data; Small; data; set; learning; Time; series (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00225-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:207:y:2010:i:1:p:121-130
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().