Comparisons and bounds for expected lifetimes of reliability systems
Jorge Navarro and
Tomasz Rychlik
European Journal of Operational Research, 2010, vol. 207, issue 1, 309-317
Abstract:
Sharp bounds on expectations of lifetimes of coherent and mixed systems composed of elements with independent and either identically or non-identically distributed lifetimes are expressed in terms of expected lifetimes of components. Similar evaluations are concluded for the respective mean residual lifetimes. In the IID case, improved inequalities dependent on a concentration parameter connected to the Gini dispersion index are obtained. The results can be used to compare systems with component lifetimes ordered in the convex ordering. In the INID case, some refined bounds are derived in terms of the expected lifetimes of series systems of smaller sizes, and the expected lifetime of single unit for the equivalent systems with IID components. The latter can be further simplified in the case of weak Schur-concavity and Schur-convexity of the system generalized domination polynomial.
Keywords: Coherent; system; Mixed; system; Signature; Mean; residual; life; Convex; order; Gini; index (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00353-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:207:y:2010:i:1:p:309-317
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().