Column generation decomposition with the degenerate constraints in the subproblem
Abdelmoutalib Metrane,
François Soumis and
Issmail Elhallaoui
European Journal of Operational Research, 2010, vol. 207, issue 1, 37-44
Abstract:
In this paper, we propose a new Dantzig-Wolfe decomposition for degenerate linear programs with the non degenerate constraints in the master problem and the degenerate ones in the subproblem. We propose three algorithms. The first one, where some set of variables of the original problem are added to the master problem, corresponds to the Improved Primal Simplex algorithm (IPS) presented recently by Elhallaoui et al. [7]. In the second one, some extreme points of the subproblem are added as columns in the master problem. The third algorithm is a mixed implementation that adds some original variables and some extreme points of a subproblem to the master problem. Experimental results on some degenerate instances show that the proposed algorithms yield computational times that are reduced by an average factor ranging from 3.32 to 13.16 compared to the primal simplex of CPLEX.
Keywords: Linear; programming; Primal; simplex; algorithm; Column; generation; Degeneracy (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00354-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:207:y:2010:i:1:p:37-44
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().