Inverse minimum cost flow problems under the weighted Hamming distance
Yiwei Jiang,
Longcheng Liu,
Biao Wu and
Enyu Yao
European Journal of Operational Research, 2010, vol. 207, issue 1, 50-54
Abstract:
Given a network N(V, A, u, c) and a feasible flow x0, an inverse minimum cost flow problem is to modify the cost vector as little as possible to make x0 form a minimum cost flow of the network. The modification can be measured by different norms. In this paper, we consider the inverse minimum cost flow problems, where the modification of the arcs is measured by the weighted Hamming distance. Both the sum-type and the bottleneck-type cases are considered. For the former, it is shown to be APX-hard due to the weighted feedback arc set problem. For the latter, we present a strongly polynomial algorithm which can be done in O(n · m2).
Keywords: Network; flows; Inverse; problem; Hamming; distance; APX-hard; Strongly; polynomial; algorithm (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00228-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:207:y:2010:i:1:p:50-54
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().