Adaptive neural network model for time-series forecasting
Wing-Keung Wong,
Min Xia and
W.C. Chu
European Journal of Operational Research, 2010, vol. 207, issue 2, 807-816
Abstract:
In this study, a novel adaptive neural network (ADNN) with the adaptive metrics of inputs and a new mechanism for admixture of outputs is proposed for time-series prediction. The adaptive metrics of inputs can solve the problems of amplitude changing and trend determination, and avoid the over-fitting of networks. The new mechanism for admixture of outputs can adjust forecasting results by the relative error and make them more accurate. The proposed ADNN method can predict periodical time-series with a complicated structure. The experimental results show that the proposed model outperforms the auto-regression (AR), artificial neural network (ANN), and adaptive k-nearest neighbors (AKN) models. The ADNN model is proved to benefit from the merits of the ANN and the AKN through its' novel structure with high robustness particularly for both chaotic and real time-series predictions.
Keywords: Time-series; Forecasting; Adaptive; metrics; Neural; networks (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00378-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:207:y:2010:i:2:p:807-816
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().