Stochastic lot-sizing problem with inventory-bounds and constant order-capacities
Yongpei Guan and
Tieming Liu
European Journal of Operational Research, 2010, vol. 207, issue 3, 1398-1409
Abstract:
In this paper, we study the stochastic version of lot-sizing problems with inventory bounds and order capacities. Customer demands, inventory bounds, and costs are subject to uncertainty and dependent with each other throughout the finite planning horizon. Two models in stochastic programming are developed: the first one has inventory-bound constraints, and the second one has both inventory-bound and order-capacity constraints. We explore structural properties of the two models and develop and dynamic programming algorithms for them, respectively. Our model also generalizes the deterministic lot-sizing problem with inventory bounds. For some cases, when applied to the deterministic versions, our algorithms outperform existing deterministic algorithms.
Keywords: Lot; sizing; Stochastic; programming; Inventory; bounds (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00485-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:207:y:2010:i:3:p:1398-1409
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().