Continuous optimization via simulation using Golden Region search
Alireza Kabirian and
Sigurdur Ólafsson
European Journal of Operational Research, 2011, vol. 208, issue 1, 19-27
Abstract:
Simulation Optimization (SO) is a class of mathematical optimization techniques in which the objective function can only be numerically evaluated through simulation. In this paper, a new SO approach called Golden Region (GR) search is developed for continuous problems. GR divides the feasible region into a number of (sub) regions and selects one region in each iteration for further search based on the quality and distribution of simulated points in the feasible region and the result of scanning the response surface through a metamodel. Monte Carlo experiments show that the GR method is efficient compared to three well-established approaches in the literature. We also prove the asymptotic convergence in probability to a global optimum for a large class of random search methods in general and GR in particular.
Keywords: Continuous; optimization; Simulation; Indifference; Zone; Probabilistic; search; Golden; Region; Metamodeling (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00598-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:208:y:2011:i:1:p:19-27
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().