Nonmonotone adaptive trust region method
Zhenjun Shi and
Shengquan Wang
European Journal of Operational Research, 2011, vol. 208, issue 1, 28-36
Abstract:
In this paper, we propose a nonmonotone adaptive trust region method for unconstrained optimization problems. This method can produce an adaptive trust region radius automatically at each iteration and allow the functional value of iterates to increase within finite iterations and finally decrease after such finite iterations. This nonmonotone approach and adaptive trust region radius can reduce the number of solving trust region subproblems when reaching the same precision. The global convergence and convergence rate of this method are analyzed under some mild conditions. Numerical results show that the proposed method is effective in practical computation.
Keywords: Unconstrained; optimization; Adaptive; trust; region; method; Global; convergence; Convergence; rate (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00603-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:208:y:2011:i:1:p:28-36
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().