EconPapers    
Economics at your fingertips  
 

A hybrid hypercube - Genetic algorithm approach for deploying many emergency response mobile units in an urban network

Nikolas Geroliminis, Konstantinos Kepaptsoglou and Matthew G. Karlaftis

European Journal of Operational Research, 2011, vol. 210, issue 2, 287-300

Abstract: Emergency response services are critical for modern societies. This paper presents a model and a heuristic solution for the optimal deployment of many emergency response units in an urban transportation network and an application for transit mobile repair units (TMRU) in the city of Athens, Greece. The model considers the stochastic nature of such services, suggesting that a unit may be already engaged, when an incident occurs. The proposed model integrates a queuing model (the hypercube model), a location model and a metaheuristic optimization algorithm (genetic algorithm) for obtaining appropriate unit locations in a two-step approach. In the first step, the service area is partitioned into sub-areas (called superdistricts) while, in parallel, necessary number of units is determined for each superdistrict. An approximate solution to the symmetric hypercube model with spatially homogeneous demand is developed. A Genetic Algorithm is combined with the approximate hypercube model for obtaining best superdistricts and associated unit numbers. With both of the above requirements defined in step one, the second step proceeds in the optimal deployment of units within each superdistrict.

Keywords: Emergency; response; Hypercube; Spatial; queues; Genetic; algorithms (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00591-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:210:y:2011:i:2:p:287-300

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:210:y:2011:i:2:p:287-300