The cross-entropy method in multi-objective optimisation: An assessment
James Bekker and
Chris Aldrich
European Journal of Operational Research, 2011, vol. 211, issue 1, 112-121
Abstract:
Solving multi-objective problems requires the evaluation of two or more conflicting objective functions, which often demands a high amount of computational power. This demand increases rapidly when estimating values for objective functions of dynamic, stochastic problems, since a number of observations are needed for each evaluation set, of which there could be many. Computer simulation applications of real-world optimisations often suffer due to this phenomenon. Evolutionary algorithms are often applied to multi-objective problems. In this article, the cross-entropy method is proposed as an alternative, since it has been proven to converge quickly in the case of single-objective optimisation problems. We adapted the basic cross-entropy method for multi-objective optimisation and applied the proposed algorithm to known test problems. This was followed by an application to a dynamic, stochastic problem where a computer simulation model provides the objective function set. The results show that acceptable results can be obtained while doing relatively few evaluations.
Keywords: Simulation; Cross-entropy; Stochastic; processes; Multi-objective; optimisation; Pareto-optimal (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00730-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:211:y:2011:i:1:p:112-121
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().