An approximate algorithm for prognostic modelling using condition monitoring information
Matthew J. Carr and
Wenbin Wang
European Journal of Operational Research, 2011, vol. 211, issue 1, 90-96
Abstract:
Established condition based maintenance modelling techniques can be computationally expensive. In this paper we propose an approximate methodology using extended Kalman-filtering and condition monitoring information to recursively establish a conditional probability density function for the residual life of a component. The conditional density is then used in the construction of a maintenance/replacement decision model. The advantages of the methodology, when compared with alternative approaches, are the direct use of the often multi-dimensional condition monitoring data and the on-line automation opportunity provided by the computational efficiency of the model that potentially enables the simultaneous condition monitoring and associated inference for a large number of components and monitored variables. The methodology is applied to a vibration monitoring scenario and compared with alternative models using the case data.
Keywords: Condition; based; maintenance; Extended; Kalman; filter; Condition; monitoring; Prognostic; modelling; Residual; life (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00664-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:211:y:2011:i:1:p:90-96
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().