Spectral methods for graph clustering - A survey
Mariá C.V. Nascimento and
André C.P.L.F. de Carvalho
European Journal of Operational Research, 2011, vol. 211, issue 2, 221-231
Abstract:
Graph clustering is an area in cluster analysis that looks for groups of related vertices in a graph. Due to its large applicability, several graph clustering algorithms have been proposed in the last years. A particular class of graph clustering algorithms is known as spectral clustering algorithms. These algorithms are mostly based on the eigen-decomposition of Laplacian matrices of either weighted or unweighted graphs. This survey presents different graph clustering formulations, most of which based on graph cut and partitioning problems, and describes the main spectral clustering algorithms found in literature that solve these problems.
Keywords: Spectral; clustering; Min-cut; Ratio; cut; ncut; Modularity (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00549-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:211:y:2011:i:2:p:221-231
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().