Large deviations theorems for optimal investment problems with large portfolios
Ba Chu,
John Knight and
Stephen Satchell
European Journal of Operational Research, 2011, vol. 211, issue 3, 533-555
Abstract:
The thrust of this paper is to develop a new theoretical framework, based on large deviations theory, for the problem of optimal asset allocation in large portfolios. This problem is, apart from being theoretically interesting, also of practical relevance; examples include, inter alia, hedge funds where optimal strategies involve a large number of assets. In particular, we also prove the upper bound of the shortfall probability (or the risk bound) for the case where there is a finite number of assets. In the two-assets scenario, the effects of two types of asymmetries (i.e., asymmetry in the portfolio return distribution and asymmetric dependence among assets) on optimal portfolios and risk bounds are investigated. We calibrate our method with international equity data. In sum, both a theoretical analysis of the method and an empirical application indicate the feasibility and the significance of our approach.
Keywords: Optimal; portfolio; Edgeworth; expansion; Shortfall; probability; Large; deviations (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00871-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:211:y:2011:i:3:p:533-555
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().