A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times
Eva Vallada and
Rubén Ruiz
European Journal of Operational Research, 2011, vol. 211, issue 3, 612-622
Abstract:
In this work a genetic algorithm is presented for the unrelated parallel machine scheduling problem in which machine and job sequence dependent setup times are considered. The proposed genetic algorithm includes a fast local search and a local search enhanced crossover operator. Two versions of the algorithm are obtained after extensive calibrations using the Design of Experiments (DOE) approach. We review, evaluate and compare the proposed algorithm against the best methods known from the literature. We also develop a benchmark of small and large instances to carry out the computational experiments. After an exhaustive computational and statistical analysis we can conclude that the proposed method shows an excellent performance overcoming the rest of the evaluated methods in a comprehensive benchmark set of instances.
Keywords: Parallel; machine; Scheduling; Makespan; Setup; times (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00014-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:211:y:2011:i:3:p:612-622
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().