EconPapers    
Economics at your fingertips  
 

Maximising entropy on the nonparametric predictive inference model for multinomial data

Joaquín Abellán, Rebecca M. Baker and Frank P.A. Coolen

European Journal of Operational Research, 2011, vol. 212, issue 1, 112-122

Abstract: The combination of mathematical models and uncertainty measures can be applied in the area of data mining for diverse objectives with as final aim to support decision making. The maximum entropy function is an excellent measure of uncertainty when the information is represented by a mathematical model based on imprecise probabilities. In this paper, we present algorithms to obtain the maximum entropy value when the information available is represented by a new model based on imprecise probabilities: the nonparametric predictive inference model for multinomial data (NPI-M), which represents a type of entropy-linear program. To reduce the complexity of the model, we prove that the NPI-M lower and upper probabilities for any general event can be expressed as a combination of the lower and upper probabilities for the singleton events, and that this model can not be associated with a closed polyhedral set of probabilities. An algorithm to obtain the maximum entropy probability distribution on the set associated with NPI-M is presented. We also consider a model which uses the closed and convex set of probability distributions generated by the NPI-M singleton probabilities, a closed polyhedral set. We call this model A-NPI-M. A-NPI-M can be seen as an approximation of NPI-M, this approximation being simpler to use because it is not necessary to consider the set of constraints associated with the exact model.

Keywords: Entropy; maximization; Imprecise; probabilities; Nonparametric; predictive; inference; Uncertainty; measures (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00048-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:212:y:2011:i:1:p:112-122

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:212:y:2011:i:1:p:112-122