Evolutionary search for difficult problem instances to support the design of job shop dispatching rules
Juergen Branke and
Christoph W. Pickardt
European Journal of Operational Research, 2011, vol. 212, issue 1, 22-32
Abstract:
Dispatching rules are simple scheduling heuristics that are widely applied in industrial practice. Their popularity can be attributed to their ability to flexibly react to shop floor disruptions that are prevalent in many real-world manufacturing environments. However, it is a challenging and time-consuming task to design local, decentralised dispatching rules that result in a good global performance of a complex shop. An evolutionary algorithm is developed to generate job shop problem instances for which an examined dispatching rule fails to achieve a good solution due to a single suboptimal decision. These instances can be easily analysed to reveal limitations of that rule which helps with the design of better rules. The method is applied to a job shop problem from the literature, resulting in new best dispatching rules for the mean flow time measure.
Keywords: Evolutionary; computations; Heuristics; Scheduling; Metaheuristics; Distributed; decision; making (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00098-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:212:y:2011:i:1:p:22-32
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().