Robust multi-market newsvendor models with interval demand data
Jun Lin and
Tsan Sheng Ng
European Journal of Operational Research, 2011, vol. 212, issue 2, 361-373
Abstract:
We present a robust model for determining the optimal order quantity and market selection for short-life-cycle products in a single period, newsvendor setting. Due to limited information about demand distribution in particular for short-life-cycle products, stochastic modeling approaches may not be suitable. We propose the minimax regret multi-market newsvendor model, where the demands are only known to be bounded within some given interval. In the basic version of the problem, a linear time solution method is developed. For the capacitated case, we establish some structural results to reduce the problem size, and then propose an approximation solution algorithm based on integer programming. Finally, we compare the performance of the proposed minimax regret model against the typical average-case and worst-case models. Our test results demonstrate that the proposed minimax regret model outperformed the average-case and worst-case models in terms of risk-related criteria and mean profit, respectively.
Keywords: Risk; analysis; Newsvendor; problem; Minimax; regret; Uncertainty; modeling (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00107-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:212:y:2011:i:2:p:361-373
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().