Stochastic uncapacitated hub location
Ivan Contreras,
Jean-François Cordeau and
Gilbert Laporte
European Journal of Operational Research, 2011, vol. 212, issue 3, 518-528
Abstract:
We study stochastic uncapacitated hub location problems in which uncertainty is associated to demands and transportation costs. We show that the stochastic problems with uncertain demands or dependent transportation costs are equivalent to their associated deterministic expected value problem (EVP), in which random variables are replaced by their expectations. In the case of uncertain independent transportation costs, the corresponding stochastic problem is not equivalent to its EVP and specific solution methods need to be developed. We describe a Monte-Carlo simulation-based algorithm that integrates a sample average approximation scheme with a Benders decomposition algorithm to solve problems having stochastic independent transportation costs. Numerical results on a set of instances with up to 50 nodes are reported.
Keywords: Hub; location; Stochastic; programming; Monte-Carlo; sampling; Benders; decomposition (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (60)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00149-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:212:y:2011:i:3:p:518-528
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().