Detecting relevant variables and interactions in supervised classification
Emilio Carrizosa,
Belén Martín-Barragán and
Dolores Romero Morales
European Journal of Operational Research, 2011, vol. 213, issue 1, 260-269
Abstract:
The widely used Support Vector Machine (SVM) method has shown to yield good results in Supervised Classification problems. When the interpretability is an important issue, then classification methods such as Classification and Regression Trees (CART) might be more attractive, since they are designed to detect the important predictor variables and, for each predictor variable, the critical values which are most relevant for classification. However, when interactions between variables strongly affect the class membership, CART may yield misleading information. Extending previous work of the authors, in this paper an SVM-based method is introduced. The numerical experiments reported show that our method is competitive against SVM and CART in terms of misclassification rates, and, at the same time, is able to detect critical values and variables interactions which are relevant for classification.
Keywords: Supervised; classification; Interactions; Support; vector; machines; Binarization (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00219-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:213:y:2011:i:1:p:260-269
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().