Stochastic convergence of random search methods to fixed size Pareto front approximations
Marco Laumanns and
Rico Zenklusen
European Journal of Operational Research, 2011, vol. 213, issue 2, 414-421
Abstract:
In this paper we investigate to what extent random search methods, equipped with an archive of bounded size to store a limited amount of solutions and other data, are able to obtain good Pareto front approximations. We propose and analyze two archiving schemes that allow for maintaining a sequence of solution sets of given cardinality that converge with probability one to an [epsilon]-Pareto set of a certain quality, under very mild assumptions on the process used to sample new solutions. The first algorithm uses a hierarchical grid to define a family of approximate dominance relations to compare solutions and solution sets. Acceptance of a new solution is based on a potential function that counts the number of occupied boxes (on various levels) and thus maintains a strictly monotonous progress to a limit set that covers the Pareto front with non-overlapping boxes at finest resolution possible. The second algorithm uses an adaptation scheme to modify the current value of [epsilon] based on the information gathered during the run. This way it will be possible to achieve convergence to the best (smallest) [epsilon] value, and to a corresponding solution set of k solutions that [epsilon]-dominate all other solutions, which is probably the best possible result regarding the limit behavior of random search methods or metaheuristics for obtaining Pareto front approximations.
Keywords: Multiple; criteria; analysis; Multiobjective; optimization; Metaheuristics; Search; theory (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711002761
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:213:y:2011:i:2:p:414-421
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().