An optimization approach to gene stacking
Pan Xu,
Lizhi Wang and
William D. Beavis
European Journal of Operational Research, 2011, vol. 214, issue 1, 168-178
Abstract:
We present a multi-objective integer programming model for the gene stacking problem, which is to bring desirable alleles found in multiple inbred lines to a single target genotype. Pareto optimal solutions from the model provide strategic stacking schemes to maximize the likelihood of successfully creating the target genotypes and to minimize the number of generations associated with a stacking strategy. A consideration of genetic diversity is also incorporated in the models to preserve all desirable allelic variants in the target population. Although the gene stacking problem is proved to be NP-hard, we have been able to obtain Pareto frontiers for smaller sized instances within one minute using the state-of-the-art commercial computer solvers in our computational experiments.
Keywords: Gene; stacking; Multi-objective; optimization; Pareto; frontier; Integer; programming (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711003559
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:214:y:2011:i:1:p:168-178
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().