EconPapers    
Economics at your fingertips  
 

A reduced variable neighborhood search algorithm for uncapacitated multilevel lot-sizing problems

Yiyong Xiao, Ikou Kaku, Qiuhong Zhao and Renqian Zhang

European Journal of Operational Research, 2011, vol. 214, issue 2, 223-231

Abstract: Multilevel lot-sizing (MLLS) problems, which involve complicated product structures with interdependence among the items, play an important role in the material requirement planning (MRP) system of modern manufacturing/assembling lines. In this paper, we present a reduced variable neighborhood search (RVNS) algorithm and several implemental techniques for solving uncapacitated MLLS problems. Computational experiments are carried out on three classes of benchmark instances under different scales (small, medium, and large). Compared with the existing literature, RVNS shows good performance and robustness on a total of 176 tested instances. For the 96 small-sized instances, the RVNS algorithm can find 100% of the optimal solutions in less computational time; for the 40 medium-sized and the 40 large-sized instances, the RVNS algorithm is competitive against other methods, enjoying good effectiveness as well as high computational efficiency. In the calculations, RVNS updated 7 (17.5%) best known solutions for the medium-sized instances and 16 (40%) best known solutions for the large-sized instances.

Keywords: Meta-heuristics; Uncapacitated; multilevel; lot-sizing; (MLLS); problem; Material; requirement; planning; (MRP); Reduced; variable; neighborhood; search; (RVNS); algorithm; Production; planning (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711003596
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:214:y:2011:i:2:p:223-231

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:214:y:2011:i:2:p:223-231