A reduced variable neighborhood search algorithm for uncapacitated multilevel lot-sizing problems
Yiyong Xiao,
Ikou Kaku,
Qiuhong Zhao and
Renqian Zhang
European Journal of Operational Research, 2011, vol. 214, issue 2, 223-231
Abstract:
Multilevel lot-sizing (MLLS) problems, which involve complicated product structures with interdependence among the items, play an important role in the material requirement planning (MRP) system of modern manufacturing/assembling lines. In this paper, we present a reduced variable neighborhood search (RVNS) algorithm and several implemental techniques for solving uncapacitated MLLS problems. Computational experiments are carried out on three classes of benchmark instances under different scales (small, medium, and large). Compared with the existing literature, RVNS shows good performance and robustness on a total of 176 tested instances. For the 96 small-sized instances, the RVNS algorithm can find 100% of the optimal solutions in less computational time; for the 40 medium-sized and the 40 large-sized instances, the RVNS algorithm is competitive against other methods, enjoying good effectiveness as well as high computational efficiency. In the calculations, RVNS updated 7 (17.5%) best known solutions for the medium-sized instances and 16 (40%) best known solutions for the large-sized instances.
Keywords: Meta-heuristics; Uncapacitated; multilevel; lot-sizing; (MLLS); problem; Material; requirement; planning; (MRP); Reduced; variable; neighborhood; search; (RVNS); algorithm; Production; planning (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711003596
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:214:y:2011:i:2:p:223-231
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().