Optimal Bayesian fault prediction scheme for a partially observable system subject to random failure
Michael Jong Kim,
Rui Jiang,
Viliam Makis and
Chi-Guhn Lee
European Journal of Operational Research, 2011, vol. 214, issue 2, 331-339
Abstract:
A new method for predicting failures of a partially observable system is presented. System deterioration is modeled as a hidden, 3-state continuous time homogeneous Markov process. States 0 and 1, which are not observable, represent good and warning conditions, respectively. Only the failure state 2 is assumed to be observable. The system is subject to condition monitoring at equidistant, discrete time epochs. The vector observation process is stochastically related to the system state. The objective is to develop a method for optimally predicting impending system failures. Model parameters are estimated using EM algorithm and a cost-optimal Bayesian fault prediction scheme is proposed. The method is illustrated using real data obtained from spectrometric analysis of oil samples collected at regular time epochs from transmission units of heavy hauler trucks used in mining industry. A comparison with other methods is given, which illustrates effectiveness of our approach.
Keywords: Maintenance; Stochastic; optimization; Failure; prediction; Hidden; Markov; modeling; Multivariate; Bayesian; control (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711003675
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:214:y:2011:i:2:p:331-339
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().