A knowledge-based multi-role decision support system for ore blending cost optimization of blast furnaces
Ruijun Zhang,
Jie Lu and
Guangquan Zhang
European Journal of Operational Research, 2011, vol. 215, issue 1, 194-203
Abstract:
Literature illustrates the difficulties in obtaining the lowest-cost optimal solution to an ore blending problem for blast furnaces by using the traditional trial-and-error method in iron and steel enterprises. To solve this problem, we developed a cost optimization model which we have implemented in a multi-role-based decision support system (DSS). On the basis of analyzing the business flow and working process of ore blending, we propose an architecture of DSS which is built based on multi-roles. This DSS construction pre-processes the data for materials and elements, builds a general database, abstracts the related optimal operations research models and introduces the reasoning mechanism of an expert system. A non-linear model of ore blending for blast furnaces and its solutions are provided. A database, a model base and a knowledge base are integrated into the expert system-based multi-role DSS to meet the different demands of data, information and decision-making knowledge for the various roles of users. A comparison of the results for the DSS and the trial-and-error method is provided. The system has produced excellent economic benefits since it was implemented at the Xiangtan Iron & Steel Group Co. Ltd., China.
Keywords: Decision; support; systems; Cost; optimization; Expert; system; Ore; blending (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711004620
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:215:y:2011:i:1:p:194-203
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().