Dynamic lot-sizing in sequential online retail auctions
Xi Chen,
Archis Ghate and
Arvind Tripathi
European Journal of Operational Research, 2011, vol. 215, issue 1, 257-267
Abstract:
Retailers often conduct non-overlapping sequential online auctions as a revenue generation and inventory clearing tool. We build a stochastic dynamic programming model for the seller's lot-size decision problem in these auctions. The model incorporates a random number of participating bidders in each auction, allows for any bid distribution, and is not restricted to any specific price-determination mechanism. Using stochastic monotonicity/stochastic concavity and supermodularity arguments, we present a complete structural characterization of optimal lot-sizing policies under a second order condition on the single-auction expected revenue function. We show that a monotone staircase with unit jumps policy is optimal and provide a simple inequality to determine the locations of these staircase jumps. Our analytical examples demonstrate that the second order condition is met in common online auction mechanisms. We also present numerical experiments and sensitivity analyses using real online auction data.
Keywords: Auctions/bidding; Dynamic; programming; e-Commerce (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711004991
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:215:y:2011:i:1:p:257-267
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().