Two-agent scheduling to minimize the total cost
Q.Q. Nong,
T.C.E. Cheng and
C.T. Ng
European Journal of Operational Research, 2011, vol. 215, issue 1, 39-44
Abstract:
Two agents, each having his own set of jobs, compete to perform their own jobs on a common processing resource. Each job of the agents has a weight that specifies its importance. The cost of the first agent is the maximum weighted completion time of his jobs while the cost of the second agent is the total weighted completion time of his jobs. We consider the scheduling problem of determining the sequence of the jobs such that the total cost of the two agents is minimized. We provide a 2-approximation algorithm for the problem, show that the case where the number of jobs of the first agent is fixed is NP-hard, and devise a polynomial time approximation scheme for this case.
Keywords: Scheduling; Multi-agent; Approximation; algorithm; Polynomial; time; approximation; scheme (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711004899
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:215:y:2011:i:1:p:39-44
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().