EconPapers    
Economics at your fingertips  
 

Tight bounds for periodicity theorems on the unbounded Knapsack problem

Ping H. Huang, Mark Lawley and Thomas Morin

European Journal of Operational Research, 2011, vol. 215, issue 2, 319-324

Abstract: Three new bounds for periodicity theorems on the unbounded Knapsack problem are developed. Periodicity theorems specify when it is optimal to pack one unit of the best item (the one with the highest profit-to-weight ratio). The successive applications of periodicity theorems can drastically reduce the size of the Knapsack problem under analysis, theoretical or empirical. We prove that each new bound is tight in the sense that no smaller bound exists under the given condition.

Keywords: Combinatorial; optimization; Integer; programming; Knapsack; problem; Number; theory; Periodicity (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171100539X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:215:y:2011:i:2:p:319-324

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:215:y:2011:i:2:p:319-324