A mathematical programming approach to the computation of the omega invariant of a numerical semigroup
Víctor Blanco
European Journal of Operational Research, 2011, vol. 215, issue 3, 539-550
Abstract:
In this paper we present a mathematical programming formulation for the [omega]-invariant of a numerical semigroup for each of its minimal generators which is an useful index in commutative algebra (in particular in factorization theory) to analyze the primality of the elements in the semigroup. The model consists of solving a problem of optimizing a linear function over the efficient set of a multiobjective linear integer program. We offer a methodology to solve this problem and we provide some computational experiments to show the efficiency of the proposed algorithm.
Keywords: Integer; programming; Multiobjective; optimization; Optimization; over; an; efficient; set; Numerical; semigroups; Factorization; theory (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711006060
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:215:y:2011:i:3:p:539-550
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().