Resource allocation in dynamic PERT networks with finite capacity
Saeed Yaghoubi,
Siamak Noori,
Amir Azaron and
Reza Tavakkoli-Moghaddam
European Journal of Operational Research, 2011, vol. 215, issue 3, 670-678
Abstract:
This article models the resource allocation problem in dynamic PERT networks with finite capacity of concurrent projects (COnstant Number of Projects In Process (CONPIP)), where activity durations are independent random variables with exponential distributions, and the new projects are generated according to a Poisson process. The system is represented as a queuing network with finite concurrent projects, where each activity of a project is performed at a devoted service station with one server located in a node of the network. For modeling dynamic PERT networks with CONPIP, we first convert the network of queues into a stochastic network. Then, by constructing a proper finite-state continuous-time Markov model, a system of differential equations is created to solve and find the completion time distribution for any particular project. Finally, we propose a multi-objective model with three conflict objectives to optimally control the resources allocated to the servers, and apply the goal attainment method to solve a discrete-time approximation of the original multi-objective problem.
Keywords: Project; management; Markov; processes; Multiple; objective; programming (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711006084
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:215:y:2011:i:3:p:670-678
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().