A multivariate adaptive regression splines cutting plane approach for solving a two-stage stochastic programming fleet assignment model
Venkata L. Pilla,
Jay M. Rosenberger,
Victoria Chen,
Narakorn Engsuwan and
Sheela Siddappa
European Journal of Operational Research, 2012, vol. 216, issue 1, 162-171
Abstract:
The fleet assignment model assigns a fleet of aircraft types to the scheduled flight legs in an airline timetable published six to twelve weeks prior to the departure of the aircraft. The objective is to maximize profit. While costs associated with assigning a particular fleet type to a leg are easy to estimate, the revenues are based upon demand, which is realized close to departure. The uncertainty in demand makes it challenging to assign the right type of aircraft to each flight leg based on forecasts taken six to twelve weeks prior to departure. Therefore, in this paper, a two-stage stochastic programming framework has been developed to model the uncertainty in demand, along with the Boeing concept of demand driven dispatch to reallocate aircraft closer to the departure of the aircraft. Traditionally, two-stage stochastic programming problems are solved using the L-shaped method. Due to the slow convergence of the L-shaped method, a novel multivariate adaptive regression splines cutting plane method has been developed. The results obtained from our approach are compared to that of the L-shaped method, and the value of demand-driven dispatch is estimated.
Keywords: Fleet assignment model; Multivariate adaptive regression splines; L-shaped method; Stochastic programming (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711006102
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:216:y:2012:i:1:p:162-171
DOI: 10.1016/j.ejor.2011.07.008
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().