Numerical methods for stochastic programs with second order dominance constraints with applications to portfolio optimization
Rudabeh Meskarian,
Huifu Xu and
Jörg Fliege
European Journal of Operational Research, 2012, vol. 216, issue 2, 376-385
Abstract:
Inspired by the successful applications of the stochastic optimization with second order stochastic dominance (SSD) model in portfolio optimization, we study new numerical methods for a general SSD model where the underlying functions are not necessarily linear. Specifically, we penalize the SSD constraints to the objective under Slater’s constraint qualification and then apply the well known stochastic approximation (SA) method and the level function method to solve the penalized problem. Both methods are iterative: the former requires to calculate an approximate subgradient of the objective function of the penalized problem at each iterate while the latter requires to calculate a subgradient. Under some moderate conditions, we show that w.p.1 the sequence of approximated solutions generated by the SA method converges to an optimal solution of the true problem. As for the level function method, the convergence is deterministic and in some cases we are able to estimate the number of iterations for a given precision. Both methods are applied to portfolio optimization problem where the return functions are not necessarily linear and some numerical test results are reported.
Keywords: Stochastic programming; Portfolio optimization; Penalty methods; Second order dominance; Stochastic approximation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171100676X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:216:y:2012:i:2:p:376-385
DOI: 10.1016/j.ejor.2011.07.044
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().