EconPapers    
Economics at your fingertips  
 

Approximation algorithms for the parallel flow shop problem

Xiandong Zhang and Steef van de Velde

European Journal of Operational Research, 2012, vol. 216, issue 3, 544-552

Abstract: We consider the NP-hard problem of scheduling n jobs in m two-stage parallel flow shops so as to minimize the makespan. This problem decomposes into two subproblems: assigning the jobs to parallel flow shops; and scheduling the jobs assigned to the same flow shop by use of Johnson’s rule. For m=2, we present a 32-approximation algorithm, and for m=3, we present a 127-approximation algorithm. Both these algorithms run in O(nlogn) time. These are the first approximation algorithms with fixed worst-case performance guarantees for the parallel flow shop problem.

Keywords: Scheduling; Parallel flow shop; Hybrid flow shop; Approximation algorithms; Worst-case analysis (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711007193
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:216:y:2012:i:3:p:544-552

DOI: 10.1016/j.ejor.2011.08.007

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:216:y:2012:i:3:p:544-552