Valuating residential real estate using parametric programming
Subhash C. Narula,
John F. Wellington and
Stephen A. Lewis
European Journal of Operational Research, 2012, vol. 217, issue 1, 120-128
Abstract:
When the estimation of the single equation multiple linear regression model is looked upon as an optimization problem, we show how the principles and methods of optimization can assist the analyst in finding an attractive prediction model. We illustrate this with the estimation of a linear prediction model for valuating residential property using regression quantiles. We make use of the linear parametric programming formulation to obtain the family of regression quantile models associated with a data set. We use the principle of dominance to reduce the number of models for consideration in the search for the most preferred property valuation model (s). We also provide useful displays that assist the analyst and the decision maker in selecting the final model (s). The approach is an interface between data analysis and operations research.
Keywords: Linear programming; Parametric programming; Real estate valuation; Regression; Regression quantiles (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711007557
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:217:y:2012:i:1:p:120-128
DOI: 10.1016/j.ejor.2011.08.014
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().