A comparison of heuristic best-first algorithms for bicriterion shortest path problems
E. Machuca,
L. Mandow,
J.L. Pérez de la Cruz and
A. Ruiz-Sepulveda
European Journal of Operational Research, 2012, vol. 217, issue 1, 44-53
Abstract:
A variety of algorithms have been proposed to solve the bicriterion shortest path problem. This article analyzes and compares the performance of three best-first (label-setting) algorithms that accept heuristic information to improve efficiency. These are NAMOA∗, MOA∗, and Tung & Chew’s algorithm (TC). A set of experiments explores the impact of heuristic information in search efficiency, and the relative performance of the algorithms. The analysis reveals that NAMOA∗ is the best option for difficult problems. Its time performance can benefit considerably from heuristic information, though not in all cases. The performance of TC is similar but somewhat worse. However, the time performance of MOA∗ is found to degrade considerably with the use of heuristic information in most cases. Explanations are provided for these phenomena.
Keywords: Search theory; Combinatorial optimization; Multiobjective shortest path problem; Best-first search; Heuristic search; Artificial intelligence (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711008010
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:217:y:2012:i:1:p:44-53
DOI: 10.1016/j.ejor.2011.08.030
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().