An optimization method to estimate models with store-level data: A case study
Graça Trindade and
Jorge Ambrósio
European Journal of Operational Research, 2012, vol. 217, issue 3, 664-672
Abstract:
The quality of the estimation of a latent segment model when only store-level aggregate data is available seems to be dependent on the computational methods selected and in particular on the optimization methodology used to obtain it. Following the stream of work that emphasizes the estimation of a segmentation structure with aggregate data, this work proposes an optimization method, among the deterministic optimization methods, that can provide estimates for segment characteristics as well as size, brand/product preferences and sensitivity to price and price promotion variation estimates that can be accommodated in dynamic models. It is shown that, among the gradient based optimization methods that were tested, the Sequential Quadratic Programming method (SQP) is the only that, for all scenarios tested for this type of problem, guarantees of reliability, precision and efficiency being robust, i.e., always able to deliver a solution. Therefore, the latent segment models can be estimated using the SQP method when only aggregate market data is available.
Keywords: Marketing; Quadratic programming; Latent models; Segmentation; Market segmentation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711008034
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:217:y:2012:i:3:p:664-672
DOI: 10.1016/j.ejor.2011.08.032
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().