Strongly sub-feasible direction method for constrained optimization problems with nonsmooth objective functions
Chun-ming Tang and
Jin-bao Jian
European Journal of Operational Research, 2012, vol. 218, issue 1, 28-37
Abstract:
In this paper, we propose a strongly sub-feasible direction method for the solution of inequality constrained optimization problems whose objective functions are not necessarily differentiable. The algorithm combines the subgradient aggregation technique with the ideas of generalized cutting plane method and of strongly sub-feasible direction method, and as results a new search direction finding subproblem and a new line search strategy are presented. The algorithm can not only accept infeasible starting points but also preserve the “strong sub-feasibility” of the current iteration without unduly increasing the objective value. Moreover, once a feasible iterate occurs, it becomes automatically a feasible descent algorithm. Global convergence is proved, and some preliminary numerical results show that the proposed algorithm is efficient.
Keywords: Nonlinear programming; Strongly sub-feasible direction; Nonsmooth; Subgradient aggregation; Global convergence (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711010320
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:218:y:2012:i:1:p:28-37
DOI: 10.1016/j.ejor.2011.10.055
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().