Multicriteria variable selection for classification of production batches
Michel J. Anzanello,
Susan L. Albin and
Wanpracha A. Chaovalitwongse
European Journal of Operational Research, 2012, vol. 218, issue 1, 97-105
Abstract:
In many industrial processes hundreds of noisy and correlated process variables are collected for monitoring and control purposes. The goal is often to correctly classify production batches into classes, such as good or failed, based on the process variables. We propose a method for selecting the best process variables for classification of process batches using multiple criteria including classification performance measures (i.e., sensitivity and specificity) and the measurement cost. The method applies Partial Least Squares (PLS) regression on the training set to derive an importance index for each variable. Then an iterative classification/elimination procedure using k-Nearest Neighbor is carried out. Finally, Pareto analysis is used to select the best set of variables and avoid excessive retention of variables. The method proposed here consistently selects process variables important for classification, regardless of the batches included in the training data. Further, we demonstrate the advantages of the proposed method using six industrial datasets.
Keywords: Multivariate statistics; Variable selection; Multiple criteria; Data mining; Batch manufacturing (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711009349
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:218:y:2012:i:1:p:97-105
DOI: 10.1016/j.ejor.2011.10.015
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().