A decomposition approach for facility location and relocation problem with uncertain number of future facilities
Ayse Durukan Sonmez and
Gino J. Lim
European Journal of Operational Research, 2012, vol. 218, issue 2, 327-338
Abstract:
In this paper, we discuss two challenges of long term facility location problem that occur simultaneously; future demand change and uncertain number of future facilities. We introduce a mathematical model that minimizes the initial and expected future weighted travel distance of customers. Our model allows relocation for the future instances by closing some of the facilities that were located initially and opening new ones, without exceeding a given budget. We present an integer programming formulation of the problem and develop a decomposition algorithm that can produce near optimal solutions in a fast manner. We compare the performance of our mathematical model against another method adapted from the literature and perform sensitivity analysis. We present numerical results that compare the performance of the proposed decomposition algorithm against the exact algorithm for the problem.
Keywords: Facility location; Uncertainty; p-Median (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711009489
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:218:y:2012:i:2:p:327-338
DOI: 10.1016/j.ejor.2011.10.028
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().