Arithmetic Brownian motion and real options
David Richard Alexander,
Mengjia Mo and
Alan Fraser Stent
European Journal of Operational Research, 2012, vol. 219, issue 1, 114-122
Abstract:
We treat real option value when the underlying process is arithmetic Brownian motion (ABM). In contrast to the more common assumption of geometric Brownian motion (GBM) and multiplicative diffusion, with ABM the underlying project value is expressed as an additive process. Its variance remains constant over time rather than rising or falling along with the project’s value, even admitting the possibility of negative values. This is a more compelling paradigm for projects that are managed as a component of overall firm value. After outlining the case for ABM, we derive analytical formulas for European calls and puts on dividend-paying assets as well as a numerical algorithm for American-style and other more complex options based on ABM. We also provide examples of their use.
Keywords: Investment analysis; Real options; Risk-neutral valuation; Arithmetic Brownian motion (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711011003
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:219:y:2012:i:1:p:114-122
DOI: 10.1016/j.ejor.2011.12.023
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().