Setting staffing requirements for time dependent queueing networks: The case of accident and emergency departments
Navid Izady and
Dave Worthington
European Journal of Operational Research, 2012, vol. 219, issue 3, 531-540
Abstract:
An incentive scheme aimed at reducing patients’ waiting times in accident and emergency departments was introduced by the UK government in 2000. It requires 98% of patients to be discharged, transferred, or admitted to inpatient care within 4hours of arrival. Setting the minimal hour by hour medical staffing levels for achieving the government target, in the presence of complexities like time-varying demand, multiple types of patients, and resource sharing, is the subject of this paper. Building on extensive body of research on time dependent queues, we propose an iterative scheme which uses infinite server networks, the square root staffing law, and simulation to come up with a good solution. The implementation of this algorithm in a typical A&E department suggests that significant improvement on the target can be gained, even without increase in total staff hours.
Keywords: Staffing emergency departments; 98% Target; Time-dependent queues; Simulation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711009805
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:219:y:2012:i:3:p:531-540
DOI: 10.1016/j.ejor.2011.10.040
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().