A belief rule-based decision support system for clinical risk assessment of cardiac chest pain
Guilan Kong,
Dong-Ling Xu,
Richard Body,
Jian-Bo Yang,
Kevin Mackway-Jones and
Simon Carley
European Journal of Operational Research, 2012, vol. 219, issue 3, 564-573
Abstract:
This paper describes a prototype clinical decision support system (CDSS) for risk stratification of patients with cardiac chest pain. A newly developed belief rule-based inference methodology-RIMER was employed for developing the prototype. Based on the belief rule-based inference methodology, the prototype CDSS can deal with uncertainties in both clinical domain knowledge and clinical data. Moreover, the prototype can automatically update its knowledge base via a belief rule base (BRB) learning module which can adjust BRB through accumulated historical clinical cases. The domain specific knowledge used to construct the knowledge base of the prototype was learned from real patient data. We simulated a set of 1000 patients in cardiac chest pain to validate the prototype. The belief rule-based prototype CDSS has been found to perform extremely well. Firstly, the system can provide more reliable and informative diagnosis recommendations than manual diagnosis using traditional rules when there are clinical uncertainties. Secondly, the diagnostic performance of the system can be significantly improved after training the BRB through accumulated clinical cases.
Keywords: Decision support systems; OR in medicine; Uncertainty modeling; Belief rule base; Evidential reasoning approach; Clinical risk assessment (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711009842
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:219:y:2012:i:3:p:564-573
DOI: 10.1016/j.ejor.2011.10.044
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().