Variable neighborhood search for metric dimension and minimal doubly resolving set problems
Nenad Mladenović,
Jozef Kratica,
Vera Kovačević-Vujčić and
Mirjana Čangalović
European Journal of Operational Research, 2012, vol. 220, issue 2, 328-337
Abstract:
In this paper, two similar NP-hard optimization problems on graphs are considered: the metric dimension problem and the problem of determining a doubly resolving set with the minimum cardinality. Both are present in many diverse areas, including network discovery and verification, robot navigation, and chemistry. For each problem, a new mathematical programming formulation is proposed. For solving more realistic large-size instances, a variable neighborhood search based heuristic is designed. An extensive experimental comparison on five different types of instances indicates that the VNS approach consistently outperforms a genetic algorithm, the only existing heuristic in the literature designed for solving those problems.
Keywords: Metaheuristics; Combinatorial optimization; Variable neighborhood search; Metric dimension; Minimal doubly resolving set (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712001361
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:220:y:2012:i:2:p:328-337
DOI: 10.1016/j.ejor.2012.02.019
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().