Stochastic Nelder–Mead simplex method – A new globally convergent direct search method for simulation optimization
Kuo-Hao Chang
European Journal of Operational Research, 2012, vol. 220, issue 3, 684-694
Abstract:
Nelder–Mead simplex method (NM), originally developed in deterministic optimization, is an efficient direct search method that optimizes the response function merely by comparing function values. While successful in deterministic settings, the application of NM to simulation optimization suffers from two problems: (1) It lacks an effective sample size scheme for controlling noise; consequently the algorithm can be misled to the wrong direction because of noise, and (2) it is a heuristic algorithm; the quality of estimated optimal solution cannot be quantified. We propose a new variant, called Stochastic Nelder–Mead simplex method (SNM), that employs an effective sample size scheme and a specially-designed global and local search framework to address these two problems. Without the use of gradient information, SNM can handle problems where the response functions are nonsmooth or gradient does not exist. This is complementary to the existing gradient-based approaches. We prove that SNM can converge to the true global optima with probability one. An extensive numerical study also shows that the performance SNM is promising and is worthy of further investigation.
Keywords: Simulation; Direct search method; Nelder–Mead simplex (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712001609
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:220:y:2012:i:3:p:684-694
DOI: 10.1016/j.ejor.2012.02.028
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().