Measuring productivity growth under factor non-substitution: An application to US steam-electric power generation utilities
Margarita Genius,
Spiro Stefanou and
Vangelis Tzouvelekas
European Journal of Operational Research, 2012, vol. 220, issue 3, 844-852
Abstract:
A theoretical framework is developed for decomposing partial factor productivity and measuring technical inefficiency when the underlying technology is characterized by factor non-substitution. With Farrell’s (1957) radial index of technical inefficiency being inappropriate in this case, Russell non-radial indices are adapted to measure technical inefficiency in a Leontief-type model. A system of factor demand equations with a regime specific technical inefficiency term is proposed and estimated allowing for dependence across inputs using a copula approach. Then the paper presents a complete decomposition of partial factor productivity changes using a dataset of US steam-power electric generation utilities.
Keywords: Productivity and competitiveness; OR in energy; Productivity growth; Technical efficiency; Factor non-substitution; Leontief-type technologies (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712001555
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:220:y:2012:i:3:p:844-852
DOI: 10.1016/j.ejor.2012.02.023
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().