A robust desirability function method for multi-response surface optimization considering model uncertainty
Zhen He,
Peng-Fei Zhu and
Sung-Hyun Park
European Journal of Operational Research, 2012, vol. 221, issue 1, 241-247
Abstract:
A robust desirability function approach to simultaneously optimizing multiple responses is proposed. The approach considers the uncertainty associated with the fitted response surface model. The uniqueness of the proposed method is that it takes account of all values in the confidence interval rather than a single predicted value for each response and then defines the robustness measure for the traditional desirability function using the worst case strategy. A hybrid genetic algorithm is developed to find the robust optima. The presented method is compared with its conventional counterpart through an illustrated example from the literature.
Keywords: Quality management; Robust optimization; Multi-response surface optimization; Desirability function; Hybrid genetic algorithm (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712002020
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:221:y:2012:i:1:p:241-247
DOI: 10.1016/j.ejor.2012.03.009
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().