Productivity change using growth accounting and frontier-based approaches – Evidence from a Monte Carlo analysis
Dimitris Giraleas,
Ali Emrouznejad and
Emmanuel Thanassoulis
European Journal of Operational Research, 2012, vol. 222, issue 3, 673-683
Abstract:
This study presents some quantitative evidence from a number of simulation experiments on the accuracy of the productivity growth estimates derived from growth accounting (GA) and frontier-based methods (namely data envelopment analysis-, corrected ordinary least squares-, and stochastic frontier analysis-based malmquist indices) under various conditions. These include the presence of technical inefficiency, measurement error, misspecification of the production function (for the GA and parametric approaches) and increased input and price volatility from one period to the next. The study finds that the frontier-based methods usually outperform GA, but the overall performance varies by experiment. Parametric approaches generally perform best when there is no functional form misspecification, but their accuracy greatly diminishes otherwise. The results also show that the deterministic approaches perform adequately even under conditions of (modest) measurement error and when measurement error becomes larger, the accuracy of all approaches (including stochastic approaches) deteriorates rapidly, to the point that their estimates could be considered unreliable for policy purposes.
Keywords: Data envelopment analysis; Productivity and competitiveness; Monte Carlo analysis; Stochastic frontier analysis; Growth accounting (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712003645
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Productivity change using growth accounting and frontier-based approaches – Evidence from a Monte Carlo analysis (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:222:y:2012:i:3:p:673-683
DOI: 10.1016/j.ejor.2012.05.015
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().