Estimation of the number of failures in the Weibull model using the ordinary differential equation
Hideo Hirose
European Journal of Operational Research, 2012, vol. 223, issue 3, 722-731
Abstract:
In estimating the number of failures using right truncated grouped data, we often encounter cases that the estimate is smaller than the true one when we use the likelihood principle to conditional probability. In infectious disease spread predictions, the SIR model described by simultaneous ordinary differential equations is commonly used, and it can predict reasonably well the number of infected patients even when the size of observed data is small. We have investigated whether the ordinary differential equation model can estimate the number of failures more accurately than does the likelihood principle under the condition of right truncated grouped data. The positive results are obtained in the Weibull model, similarly to the cases of the SARS, A(H1N1), and FMD.
Keywords: Reliability; Right truncated grouped data; Likelihood principle; Differential equation; Weibull distribution; SARS A(H1N1) FMD (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712005322
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:223:y:2012:i:3:p:722-731
DOI: 10.1016/j.ejor.2012.07.011
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().