Scheduling electric power production at a wind farm
Zijun Zhang,
Andrew Kusiak and
Zhe Song
European Journal of Operational Research, 2013, vol. 224, issue 1, 227-238
Abstract:
We present a model for scheduling power generation at a wind farm, and introduce a particle swarm optimization algorithm with a small world network structure to solve the model. The solution generated by the algorithm defines the operational status of wind turbines for a scheduling horizon selected by a decision maker. Different operational scenarios are constructed based on time series data of electricity price, grid demand, and wind speed. The computational results provide insights into management of a wind farm.
Keywords: Scheduling; Evolutionary computations; Wind farm; Particle swarm optimization; Small world network (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712006005
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:224:y:2013:i:1:p:227-238
DOI: 10.1016/j.ejor.2012.07.043
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().