A basic formula for performance gradient estimation of semi-Markov decision processes
Yanjie Li and
Fang Cao
European Journal of Operational Research, 2013, vol. 224, issue 2, 333-339
Abstract:
This paper presents a basic formula for performance gradient estimation of semi-Markov decision processes (SMDPs) under average-reward criterion. This formula directly follows from a sensitivity equation in perturbation analysis. With this formula, we develop three sample-path-based gradient estimation algorithms by using a single sample path. These algorithms naturally extend many gradient estimation algorithms for discrete-time Markov systems to continuous time semi-Markov models. In particular, they require less storage than the algorithm in the literature.
Keywords: Markov processes; Semi-Markov decision processes; Sample-path-based gradient estimation; Perturbation analysis (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712006108
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:224:y:2013:i:2:p:333-339
DOI: 10.1016/j.ejor.2012.08.010
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().